My Link

Photobucket

Teknologi jaringan GSM dan CDMA

· Teknologi GSM

Saat ini GSM telah mampu melayani layanan data pesan SMS dan 14.4-Kbps circuitswitched data service untuk data dan fax. Kecepatan transfer data 14.4 Kbps ini relative lebih lambat bila dibandingkan dengan wireline modem yang pada umumnya memiliki kecepatan 33.6 dan 56 Kbps. Untuk meningkatkan kemampuan layanan data pada jaringan GSM, maka operator dan penyedia infrastruktur GSM (provide) telah menspesifikasikan pengembangan generasi baru GSM yakni GSM pase II yang mampu memberikan layanan teknologi sebagai berikut :

1. High-Speed Circuit-Switched Data (HSCD) dengan menggunakan beberapa ciruit cannel.

2. GPRS untuk memberikan layanan akses paket radio ke jaringan paket data eksternal semisal X.25 atau Internet.

3. Enhanced Data Rate for GSM Evolution (EDGE) yang menggunakan skema modulasi baru untuk menghasilkan nilai troughput yang lebih besar hingga mencapai tiga kalinya bila dibandingkan dengan GPRS dan HSCD.

4. Universal Mobile Telecomunication System (UMTS), teknologi wireless baru yang menggunakan infrastruktur deployment.

5. Pengembangan-pengembangan GSM tersebut memungkinakan pengiriman / komunikasi data dengan nilai troughput yang lebih besar, efisiensi spektral yang lebih baik, dan waktu panggilan setup yang semakian rendah.


· Teknologi GPRS

General Packet Radio service atau lebih dikenal dengan istilah GPRS merupakan layanan pengiriman data berbasis paket data pada jaringan GSM. Dengan adanya teknologi GPRS maka membuat pengiriman data mobile pada jaringan GSM menjadi lebih cepat, murah dan user-friendly dari sebelumnya. GPRS juga memperkenalkan adanya paket switching dan Internet Protokol pada jaringan mobile sehingga memberikan layanan kecepatan transfer data dan layanan pengaksesan jaringan internet melalui perangkat/jaringan mobile kepada para penggunanya.

Teknologi GPRS dikembangkan dengan tujuan untuk memungkinkan operator GSM memenuhi kebutuhan akan layanan paket data wireless yang merupakan dampak dari meledaknya pertumbuhan internet dan intranet korporat. Dengan teknologi GPRS yang memiliki keunggulan paket-switched untuk pengiriman data yang bersifat bursty, maka tidak memerlukan setup koneksi terlebih dahulu dan memungkinkan penggunaan koneksi secara bersama untuk memaksimalkan efisiensi penggunaan sumberdaya.

Tujuan dikembangkannya teknologi GPRS bagi operator jaringan GSM adalah untuk menyediakan layanan pengiriman data dan pengaksesan jaringan internet yang lebih cepat dan murah.

Paket switching pada GPRS mengandung arti bahwa sumberdaya radio GPRS hanya akan digunakan ketika pengguna melakukan pengiriman atau penerimaan paket data. Dengan adanya teknologi paket-switchign ini maka suatu radio channel atau bandwidth dapat digunakan bersama-sama oleh dua atau lebih pengguna secara konkuren. Dengan demikian dengan mode paket switching ini memungkinkan optimasi yang lebih baik dalam pemanfaatan sumberdaya jaringan radio pada GPRS untuk aplikasi data. Hal ini memungkinkan aplikasi data tersebut memiliki karakteristik transmisi sebagai berikut :

1. Infrequent data transmission

2. Frequent transmision of small data block yaitu frekuensi transmisi yang menggunakan blok data dengan ukuran kecil sebagai contoh untuk mendownload beberapa halaman web (html) melalui aplikasi web browser hanya membutuhkan beberapa kilobyte.

3. Infrequent transmision of larger data block. Sebagai contoh transaksi untuk mengakses penyimpanan data pada basisdata yang membutuhkan block data yang lebih banyak/lebih besar sehingga membutuhkan waktu yang cukup lama.

4. Asymmetrical troughput between uplink and downlink sebagai contoh pada aplikasi pengambilan data pada server yang mana uplink digunakan untuk mengirimkan sinyal perintah (signalling command) sedangkan downlink digunakan untuk menerima data sebagai respon dari request.

GPRS telah banyak digunakan untuk mendukung aplikasi-aplikasi yang berkaitan dengan layanan komunikasi data. Beberapa contoh aplikasi yang menggunakan teknologi GPRS diantaranya adalah chat, pengiriman data/informasi berbasis teks dan visual, pengiriman data gambar/image, web browsing, transfer file diantaranya MMS (Multimedia Message Service), aplikasi E-mail korporat dan internet, SMS, dll. GPRS dapat melakukan transmisi data untuk aplikasi-aplikasi di atas hingga mencapai 0,22bps hingga 111 Kbps.

GPRS mobile station atau GPRS terminal dikelompokkan dalam beberapa kelas yang masing-masing memiliki kelebihan/kapabilitas yang berbeda sesuai dengan kebutuhan masyarakat akan komunikasi data. Kelas-kelas GPRS terminal tersebut diantaranya adalah sebagai berikut :

1. Class A, yaitu sebuah mobile station yang dapat membuat atau menerima panggilan baik GPRS maupun GSM secara simultan.

2. Class B, yaitu sebuah mobile station yang dapat membuat dan atau menerima panggilan baik GPRS maupun GSM tapi tidak secara simultan.

3. Class C, yaitu mobile station yang dapat diset secara manual apakah mode GSM atau GPRS.

· Pengiriman dan penerimaan data pada mobile station GPRS

Area geografis yang dilingkupi oleh jaringan GPRS dibagi ke dalam area yang lebih kecil yang disebut dengan cells dan area routing. Sebuah cell adalah area yang dilayanai oleh set/himpunan radio base stations. Ketika sebuah GPRS mobile station ingin melakukan pengiriman data atau penerimaan data, maka mobile station tersebut akan mencari sinyal radio yang terkuat yang dapat ditemukan diantara base stationnbase station yang ada. Setelah menemukan sinyal radio terkuat dari suatu base station, maka mobile station tersebut akan mengirimkan notifikasi ke jaringan dari cell untuk memilih base station yang mengirimkan sinyal radio terkuat dan menngunakannya untuk melayani layanan pengiriman atau penerimaan data. Secara periodik mobile station akan mendengarkan sinyal radio dari himpunan base station tersebut, dan jika ditemukan bahwa ada base station lain yang memiliki sinyal radio lebih kuat dari base station saat ini, maka mobile station tersebut akan mengganti base station dengan base station yang baru yang memiliki sinyal radio yang lebih kuat. Proses ini disebut dengan istilah reselect. Routing area adalah himpunan atau sekelompok cell-cell area yang berdekatan. Routing area ini akan berguna dalam proses location-updating traffic dan paging traffic. Untuk mobile station yang secara aktif sedang melakukan proses pengiriman atau penerimaan paket data, maka proses penelusuran lokasi dilakukan melalui tingkat cell (jaringan akan menjaga track dari cell yang saat ini sedang digunakan). Sedangkan untuk kondisi moble station yang dalam keadaan tidak aktif atau idle, maka penelusuran dilakukan berdasarkan routing area (jaringan akan menjaga track dari routing area).

Pemanfaatan GPRS mobile station pada aplikasi yang pengiriman data dengan menggunakan GPRS pada umumnya dibuat dengan arsitektur client/server. Pada prinsipnya client adalah agen yang mengirimkan request ke server untuk kemudian diproses oleh server dan hasilnya dikirimkan kembali ke client. Dan peran GPRS mobile station dapat diset sebagai client mode atau server mode. GPRS mobile station pada umumnya berperan sebagai client , contohnya adalah ketika GPRS mobile station digunaan untuk melakukan akses internet , intranet, atau database dengan melakukan inisialisasi komunikasi GPRS. GPRS mobile station juga dapat berperan sebagai server sebagai contoh ketika digunakan untuk aplikasi monitoring telemetery dimana GPRS mobile station dihubungkan dengan device/perangkat lain seperti kamera untuk melakukan monitoring atau mengambil data telemetry.

maka ketika sebuah mobile station GPRS akan menggunakan layanan jaringan paket data wireless, terlebih dahulu mobile station tersebut melakukan attach ke Service GPRS Support Node (SGSN). Ketika sebuah SGSN menerima request dari sebuah mobile station, maka SGSN akan memastikan apakan akan memberikan layanan request tersebut. Beberapa faktor yang harus diperhatikan adalah sebagai berikut :


1. Apakah pengguna mobile station tersebut merupakan subscriber dari GPRS services atau tidak. Proses pengecekkan (verifikasi) informasi subcription dari mobile station ini disebut dengan authorization.

2. Proses pencekkan (verifikasi) informasi tentang identitas dari mobile station. Hal ini disebut dengan istilah authentication.

3. Pengecekkan terhadap level QoS (Quality of Service) dari request service yang diminta oleh mobile station. Hal yang dilakukan diantaranya proses verifikasi terhadap kemampuan subscriber untuk membayar service yang diminta dan juga verifikasi terhadap kemampuan jaringan untuk memberikan layanan sesuai yang diminta (saat bersamaan jaringan sedang melayani service terhadap pengguna yang lain) .

4. Setelah memutuskan untuk menerima request, maka SGSN akan menyimpan data track dari mobile station sehingga mengetahui lokasi dimana data paket harus dikirimkan / diroutekan ke mobile station (proses penerimaan paket data).

Proses attachment ke SGSN tidak menjadi jaminan bahwa proses pegiriman paket data dapat dilakukan. Agar mobile statin dapat melakukan proses pengiriman paket data, maka mobile subscriber harus terlebih dahulu mengaktifkan sebuah PDP address (semisal IP address).

PDP address merupakan network layer addresess (OSI model layer 3). Sistem GPRS mendukung baik layer protokol jaringan X.25 maupun IP. Karena itu alamat PDP dapat berupa X.25, IP, atau kedua-duanya. Masing-masing PDP address disimpan dan dikenali (anchored) pada sebuah Gateway GPRS support Node (GGSN). Semua lalu lintas paket data yang dikirimkan dari jaringan paket data publik ke alamat PDP akan melalui GGSN. Ketika mobile station melakukan proses pengiriman data, maka selain melakukan attach ke SGSN, maka mobile station tersebut juga harus mengaktifkan sebuah alamat PDP. Alamat PDP membangun sebuah asosiasi antara SGSN dengan GGSN yang informasinya disimpan dalam PDP context. Sebuah mobile station hanya melakukan attach ke satu SGSN, tetapi dapat mengaktifkan beberapa alamat PDP yang mungkin di-anchored oleh GGSn yang berbeda.

Ketika mobile station telah melakukan attach ke SGSN dan mengaktifkan sebuah alamat PDP, maka mobile station tersebut telah siap untuk melakukan komunikasi dengan perangkat yang lain. Sebagai contoh GPRS mobile dapat berkomunikasi dengan sistem komputer yang terhubung ke jaringan X.25 atau jaringan IP. Dengan demikian proses pengiriman data (data transfer) dan Penerimaan data (data receiving) dengan menggunakan GPRS dilakukan melalui proses sebagai berikut :


1. Setup koneksi ke jaringan GPRS (dilakukan terpisah dengan jaringan GSM)

2. Mobile station melakukan prosedur GPRS attach.

Hal-hal yang dilakukan antara lain :

a. Mobile station melakukan request attachment ke SGSN.

b. SGSN melakukan authorization dan autentication terhadap requirement dari mobile station.

c. SGSN melakukan verifikasi terhadap level QoS service yang diminta oleh mobile station.

d. Jika request attachment diterima, maka selanjutnya SGSN akan meyimpan dan memaintain data lokasi (track) mobile station dengan melakukan maintain terhadap database lokasi mobile station yaitu HLR dan MSC/VLR.

3. Untuk dapat melakukan pengiriman data, maka mobile station akan mengaktifkan alamat PDP. Infromasi yang dibutuhkan untuk mengaktifkan alamat PDP ini disimpan dalam PDP context.

Pemanfaatan Teknologi GPRS

Tujuan utama dari pengembangan teknologi GPRS adalah untuk memfasilitasi interkoneksi antara sebuah perangkat mobile dengan jaringan paket-switch data yang lain dengan melalui akses kajaringan internet. Dengan adanya pengenalan mode paket pada GPRS, maka memungkinkan integrasi antara teknologi mobile telephony dan internet menjadi teknologi internet bergerak (mobile internet technology). Teknologi ini memungkinkan pengguna telepon seluler (mobile phone) mendapat layanan baru/tambahan sebagai berikut :

1. Client-Server Services yang memungkinkan pengaksesan data yang tersimpan dalam suatu basisdata. Contoh penerapan aplikasi ini adalah pengaksesan WEB melalui browser.

2. Messaging Services yang ditujukan untuk komunikasi antar individu pengguna dengan memanfaatkan storage server untuk penanganan pesan sebagai tempat penyimpanan pesan sementara / intermediate sebelum diterima oleh pengguna. Conoth hasil layanannya yaitu aplikasi Multimedia Message Service(MMS) yang digunakan untuk pengiriman data pesan multimedia melalui jaringan GSM dengan menggunakan telepon seluler.

3. Real-time conversational Services yang memberikan layanan komunikasi dua arah kepada pengguna secara real-time. Beberapa contoh penerapannya adalah pada aplikasi internet dan multimedia semisal Voice over IP dan video conferencing.

4. Tele-action services

GSM-GPRS modem (GPRS terminal/ GPRS mobile station) GSM-GPRS modem (GPRS terminal/mobile station) adalah perangkat mobile yang memungkinkan pengguna /mobile user melakukan komunikasi data dengan menggunakan teknologi GPRS. GSM-GPRS modem yang hadir di market memiliki karakteristik yang berbeda. Diantara karakteristik GSM-GPRS modem yang ada antaralain sebagai berikut :

1. Dualband atau treeband GSM-GPRS modem (EGSM 900/1800 MHZ dan EGSm 900/1800/1900 MHZ).

2. Didesain untuk aplikasi berbasis GPRS, data, fax, SMS, dan aplikasi suara.

3. Tegangan masukan antara 8 volt hingga 40 volt.

4. Arus masukan 8 mA saat kondisi tidak aktif (idle mode) dan, 150 mA saat komunikasi berlangsung (aktif) pada GSM 900 @ 12 V, serta 110 mA saat komunikasi berlangsung pada komunikasi GSM 1800 @ 12 V

5. Suhu/temperatur berkisar antara -20 hingga 55 derajat celcius.

6. Dimensi keseluruhan 80mmX62mmX31mm / Weight : 200 gr

7. Interface komunikasi dengan RS-232 melalui konektor tipe D-TYPE dengan 9 pin

8. interface komunikasi dengan RJ11 voice konektor

9. Power supply dengan Molex yang memiliki 4 pin konektor

10. Interce komunikasi dengan konektor SMA antenna

11. Togle spring SIM holder

12. Red LED power on

13. Green LED status dari GSM/GPRS modul

Untuk melakukan komunikasi data (baik mengirim atau pun menerima data) pada GSM-GPRS modem, maka digunakan perintah AT+Command.

Tarif GPRS

Tarif GPRS berbeda-beda tergantung pada provider jaringan telekomunikasi GSM. Di indonesia tarif GPRS yang disediakan oleh Telkomsel(HALO), IM3(Smart dan Bright), Telkomsel(Simpati), XL Bebas, dan Matrix(Satelindo) dapat dilihat pada tabel berikut :

Provider Biaya Akses VIA WAP Biaya akses VIA WEB

Telkomsel (HALO) Rp. 25/kb Rp. 25/kb

IM3 (Smart dan Bright) Rp. 10/kb Rp. 10/kb

Telkomsel(SIMPATI) Rp. 30/kb Rp. 30/kb

XL Bebas Rp. 25/kb Rp. 25/kb

Matrixs(Satelindo) Rp. 10/kb Rp. 10/kb

CDMA

Pada pertengahan dekade 1990, International Telecommunication Union (ITU) memulai usaha untuk membangun layanan telekomunikasi untuk pengguna di manapun dan kapanpun. Tujuannya adalah interoperabilitas sistem-sistem bergerak (mobile) yang sanggup memberikan layanan bernilai tambah. Pada 1998, ITU mengeluarkan proposal Radio Transmission Technology (RTT) untuk International Mobile Telecommunications-2000 (IMT-2000), nama formal untuk standar 3G. IMT- 2000 menyetujui tiga buah standar untuk 3G: W-CDMA, CDMA2000, dan TDSCDMA. W-CDMA (Wideband Code Division Multiple Access) didukung oleh European Telecommunications Standards Institute (ETSI) dan operator GSM di Eropa dan tempat lain. Sedangkan CDMA2000 didukung oleh komunitas CDMA Amerika Utara, dipimpin oleh CDMA Development Group (CDG). Standar ketiga (TDSCDMA) didukung di China. Diawal tahun 1998, W-CDMA diikutsertakan dalam standar ETSI yaitu UMTS (Universal Mobile Telecommunications System).

W-CDMA telah dengan luas didukung oleh operator GSM di seluruh dunia. Karena W-CDMA membutuhkan setidaknya 5 MHz spektrum, operator yang mendukung WCDMA

harus membeli spektrum baru, dengan biaya miliaran dolar, untuk menggunakan teknologi ini. W-CDMA menjanjikan penggunaan layanan suara dan data dengan kapasitas maksimum 2 Mbps melalui kanal 5 MHz. Namun dilapangan, operator percaya bahwa W-CDMA hanya dapat menangani hingga 384 kbps.

CDMA2000 banyak digunakan oleh operator CDMA (cdmaOne) yang sudah ada. CDMA2000 dirancang untuk beroperasi pada spektrum yang sama dengan jaringan cdmaOne sehingga tidak membutuhkan spektrum baru. Untuk memperoleh ini, CDMA menawarkan dua tahap jalur evolusi. Tahap pertama adalah teknologi dengan nama CDMA2000 1xRTT yang menggunakan sebuah kanal CDMA 1,25 MHz untuk memperoleh kecepatan data 153 Kbps dan dua kali kapasitas suara dibandingkan cdmaOne. Spektrum yang yang dilepaskan karena penggunaan 1xRTT sekarang dapat digunakan untuk tahap evolusi berikutnya, CDMA2000 1xEV-DO.

CDMA2000 1xEV-DO menawarkan kecepatan transfer data hingga 2.4 Mbps. Pada makalah ini pembahasan dibatasi pada CDMA2000 yang digunakan operator-operator di Indonesia. Teknologi CDMA memisahkan panggilan pengguna satu dengan lainnya menggunakan kode, bukan frekuensi. Hasilnya, semua frekuensi CDMA dapat digunakan semua sel, sehingga meningkatkan jumlah total kanal suara yang tersedia dan kapasitas sistem secara keseluruhan. CDMA adalah teknologi spread spectrum, yang berarti ia menyebarkan informasi yang dikandung sinyal tertentu ke dalam bandwidth yang lebih besar dari sinyal aslinya. Spread spectrum telah secara substansial meningkatkan bandwidth sinyal pembawa informasi, jauh di atas kebutuhan komunikasi dasar. Peningkatan bandwidth, walau tidak diperlukan untuk komunikasi, dapat mengurangi efek yang merugikan dari interferensi.

CDMA2000

Tujuan CDMA2000 adalah menyediakan layanan 2.5G dan 3G menggunakan system TIA/EIA-41 yang terdiri dari sistem IS-95A, B, dan cdmaOne

Ada beberapa tipe CDMA2000 yaitu:

• CDMA2000 1xRTT

Spesifikasi 1xRTT dikembangkan oleh Third Generation Partnership Project 2 (3GPP2), sebuah kerjasama yang terdiri dari lima badan standard telekomunikasi: CWTS di China, ARIB dan TTC di Jepang, TTA di Korea dan TIA di Amerika Utara. CDMA2000 1xRTT menawarkan layanan dengan kecepatan hingga 153 kbps dalam rentang spektrum yang kecil (1,25 MHz per carrier).

• CDMA2000 1xEV-DO

1xEV-DO, juga dikenal dengan 1X-EV Phase One, adalah sebuah peningkatan dengan meletakkan suara dan data pada kanal yang terpisah guna menyediakan pengiriman data pada kecepatan 2.4 Mbit/s.

• CDMA2000 1xEV-DV

EV-DV, atau 1X-EV Phase Two menjanjikan kecepatan data berkisar dari 3Mbps hingga 5Mbps. Hingga kini telah ada 8 proposal yang dikirim ke komite standar 3GPP2 untuk rancangan EV-DV.

• CDMA2000 3xRTT

3xRTT adalah sebuah standar IMT-2000 (3G) yang disetujui ITU. Ia adalah bagian dari apa yang disebut ITU sebagai IMT-2000 CDMA MC. Ia menggunakan spektrum 5 MHz untuk memberikan kecepatan data berkisar antara 2 hingga 4 Mbps.

3.3 CDMA di Indonesia

Saat ini di Indonesia telah ada setidaknya empat operator CDMA. Telkom dengan Flexi-nya, Mobile-8 dengan Fren-nya, Bakrie Telecommunication dengan Esia-nya, dan Indosat dengan StarOne-nya. Teknologi yang digunakan oleh para operator CDMA kebanyakan masih terbatas pada CDMA 1xRTT. Walaupun ada operator, yaitu Mobile-8, yang menawarkan CDMA 1xEV-DO untuk daerah-daerah tertentu di Jakarta.

Kecepatan transfer data yang terjadi masih jauh dari kapasitas CDMA sebenarnya. Misalnya saja Telkom Flexi yang menggunakan CDMA 1xRTT, yang seharusnya mampu mencapai kecepatan 153 kbps, saat ini baru dibuka pada kecepatan efektif 30 hingga 70 kbps.

Untuk biaya akses data, tarif yang diberlakukan masing-masing operator cenderung sama yaitu Rp 5/Kb.

Perbandingan GSM dan CDMA

Kecepatan Transfer

CDMA menawarkan kecepatan transfer data yang lebih banding GSM. Dengan teknologi CDMA2000 1xRTT secara teoritis kita dapat menyampaikan data hingga 153 kbps. Sedangkan GPRS hanya mencapai 111 kbps.

Biaya

Daftar biaya layanan data yang ditawarkan operator telepon selular di Indonesia dapat dilihat pada tabel di bawah. Untuk operator CDMA biaya layanan data cenderung sama yaitu Rp. 5/kb. Variasi yang lebih besar terlihat pada opeartor GSM, tariff layanan data berkisar antara Rp. 10/kb s.d. Rp 30/kb. Bila kita perhatikan biaya layanan untuk setiap kilobyte data pada kartu selular CDMA lebih murah sekitar 2 sampai 10 kali kartu GSM.

Biaya Layanan Data GPRS

Produk Biaya/kb

kartuHALO Rp. 25

Simpati Rp. 30

IM3 Smart Rp. 10 (*)

IM3 Bright Rp. 10 (*)

XL Bebas Rp. 25

Matrix Rp. 10

(*) Belum termasuk PPN

Biaya Layanan Data CDMA

Produk Biaya/kb

Esia Prabayar Rp. 5

Esia Pascabayar Rp. 5

Fren Prabayar Rp. 5

Fren Pascabayar Rp. 5

StarOne Prabayar Rp. 5,5

StarOne Pascabayar Rp. 5

Flexi Prabayar Rp. 3

Flexi Pascabayar Rp 5

4.3 Cakupan Wilayah


Cakupan wilayah untuk GPRS lebih luas dari CDMA karena teknologi GPRS menggunakan jaringan GSM yang lebih dahulu ada, lebih mapan dan mencakup wilayah area yang lebih luas bila dibandingkan dengan CDMA.

Teknik mengukur komponen

Mengukur Resistensi

Pilih jangkah pada OHM, kemudian ujung kabel penyidik merah dan hitam disentuhkan dan lakukan zero seting dengan memutar tombol nol.

Mengukur Tegangan DC

Perkirakan tegangan yang akan diukur, letakkan jangkah pada skala yang lebih tinggi. penyidik merah pada positif dan hitam pada negative.


Mengukur Daya

Daya di hitung dari perkalian arus dan tegangan dari hasil pengukuran arus dan tegangan.


Mengukur Tegangan AC

Seperti halnya pada pengukuran VDC, perkirakan tegangan yang akan diukur, letakkan jangkah pada skala yang lebih tinggi. Pada umumnya avometer hanya dapat mengukur arus berbentuk sinus dengan frekuensi antara 30 Hz­ - 30 KHz. Hasil pengukuran adalah tegangan efektif (Veff).


Mengukur Arus (Searah)

Rangkaian yang akan diukur diputuskan pada salah satu titik, dan melalui kedua titik yang terputus tadi arus dilewatkan melalui avometer.

Menguji Kapasitor / Kondensator

Sebelumnya muatan kondensator didischarge. Dengan jangkah pada OHM, tempelkan penyidik merah pada kutub POS dan hitam pada MIN.

Bila jarum menyimpang ke KANAN dan kemudian secara berangsur-­angsur kembali ke KIRI, berarti kondensator baik. Bila jarum tidak bergerak, kondensator putus dan bila jarum mentok ke kanan dan tidak balik, kemungkinan kondensator bocor.

Untuk menguji elco 10 F jangkah pada x10 k atau 1 k. Untuk kapasitas sampai 100 F jangkah pada x100, di atas 1000 F, jangkah x1 dan menguji kondensator non elektrolit jangkah pada x10 k. Menguji Hubungan Pada Circuit / Rangkaian

Suatu circuit atau bisa juga kumparan trafo diperiksa resistansinya, dan koneksi baik bila resistansinya menunjukkan angka NOL.

Menguji Dioda

Dengan jangkah OHM x1 k atau x100 penyidik merah ditempel pada katoda (ada tanda gelang) dan hitam pada anoda, jarum harus ke kanan. Penyidik dibalik ialah merah ke anoda dan hitam ke katoda, jarum harus tidak bergerak. Bila tidak demikian berarti kemungkinan diode rusak.

Cara demikian juga dapat digunakan untuk mengetahui mana anoda dan mana katoda dari suatu diode yang gelangnya terhapus.

Dengan jangkah VDC, bahan suatu dioda dapat juga diperkirakan dengan circuit pada gambar 10. Bila tegangan katoda­ anoda 0.2 V, maka kemungkinan dioda germanium, dan bila 0.6V kemungkinan dioda silicon.

Menguji Transistor

Transistor ekivalen dengan dua buah dioda yang digabung, sehingga prinsip pengujian dioda diterapkan pada pengujian transistor. Untuk transistor jenis NPN, pengujian dengan jangkah pada x100, penyidik hitam ditempel pada Basis dan merah pada Kolektor, jarum harus meyimpang ke kanan. Bila penyidik merah dipindah ke Emitor, jarum harus ke kanan lagi.

Kemudian penyidik merah pada Basis dan hitam pada Kolektor, jarum harus tidak menyimpang dan bila penyidik hitam dipindah ke Emitor jarum juga harus tidak menyimpang.

Selanjutnya dengan jangkah pada 1 k penyidik hitam ditempel pada kolektor dan merah, pada emitor, jarum harus sedikit menyimpang ke kanan dan bila dibalik jarum harus tidak menyimpang. Bila salah satu peristiwa tersebut tidak terjadi, maka kemungkinan transistor rusak.

Untuk transitor jenis PNP, pengujian dilakukan dengan penyidik merah pada Basis dan hitam pada Kolektor, jarum harus meyimpang ke kanan. Demikian pula bila penyidik merah dipindah ke Emitor, jarum arus menyimpang ke kanan lagi. Selanjutnya analog dengan pangujian NPN.


Kita dapat menggunakan cara tersebut untuk mengetahui mana Basis, mana Kolektor dan mana Emitor suatu transistor dan juga apakah jenis transistor PNP atau NPN. Beberapa jenis multimeter dilengkapi pula fasilitas pengukur hFE, ialah salah parameter penting suatu transistor.

Dengan circuit seperti pada gambar, dapat diperkirakan bahan transistor. Pengujian cukup dilakukan antara Basis dan Emitor, bila voltage 0.2 V germanium dan bila 0.6 V maka kemungkinan silicon.

Menguji FET


Penentuan jenis FET dilakukan dengan jangkah pada x100 penyidik hitam pada Source dan merah pada Gate. Bila jarum menyimpang, maka janis FET adalah kanal­P dan bila tidak, FET adalah kanal­ N.

Kerusakan FET dapat diamati dengan rangkaian pada gambar. Jangkah diletakkan pada x1k atau x10k, potensio pada minimum, resistansi harus kecil. Bila potensio diputar ke kanan, resistansi harus tak terhingga. Bila peristiwa ini tidak terjadi, maka kemungkinan FET rusak.

Menguji UJT


Cara kerja UJT (Uni Junktion Transistor) adalah seperti switch, UJT kalau masih bisa on­ off berarti masih baik.

Jangkah pada 10 VDC dan potensio pada minimum, tegangan harus kecil. Setelah potensio diputar pelan­-pelan jarum naik sampai posisi tertentu dan kalau diputar terus jarum tetap disitu. Bila jarum diputar pelan-­pelan ke arah minimum lagi, pada suatu posisi tertentu tiba-­tiba jarum bergerak ke kiri dan bila putaran potensio diteruskan sampai minimum jarum tetap disitu. Bila peristiwa tersebut terjadi, maka UJT masih baik.

Mendeteksi kerusakan ponsel dengan DC Power Supply

Dalam dunia teknisi ponsel, ada cara lain yang bisa dilakukan untuk melakukan pendeteksian kerusakan ponsel yaitu dengan menggunakan sebuah alat yang disebut DC Power Supply. DC power supply ini sangat bermanfaat sekali untuk mengetahui tegangan yang dihasilkan oleh ponsel guna mendeteksi secara umum kerusakan yang dialami dan bisa juga menggantikan fungsi baterai dan mencharge baterai. Perlu diketahui bahwa masing-masing merk ponsel berbeda – beda Amphere yang dihasilkan, jadi harus sering menggunakan dan mencatat hasil amper yang di berikan.

Cara penggunaan DC power supply :

Ø Hidupkan DC power supply dengan menekan saklar On

Ø Posisikan jarum pada kolom voltage ( V ) pada 3,6- 4 volt (Sesuai Voltage Battry)

Ø Kabel merah = positif

Ø Kabel hitam = negatif

Ø Kabel hijau/biru = Btemp ( baterai temperatur )

Ø Kabel kuning = BSI ( baterai System informasi )

Ø Letakkan kabel merah pada konektor positif baterai pada ponsel

Ø Letakkan kabel hitam pada konektor negatif baterai pada ponsel

Ø Lalu tekan switch on pada ponsel

Ø Perhatikan jarum pada kolom Amper, berapakah yang dihasilkan? ( melalui kolom amper inilah nanti akan dianalisa kerusakan yang terjadi, apakah penyebabnya software atau hardware )

Teknik memperbaiki Ponsel Nokia Seri E61

Tak akan ada habisnya jika kita membahas teknik perbaikan ponsel, anda bisa membayangkan jika dalam satu bulan ada lima bahkan sepuluh type ponsel yang di keluarkan, yang kesemuanya berbeda jalur dan bentuknya, maka akan berbeda pula cara menanganinya. Artinya akan ada banyak macam teknik perbaikan untuk berbagai type ponsel. Dan edisi ini kita akan coba mebahas kerusakan yang di alami untuk nokia type seri E61, ponsel keluaran tahun ini yang mempunyai bentuk yang sama dengan PDA. Ternyata ada beberapa kerusakan yang dapat kita perbaiki sendiri.Berikut ini beberapa masalah yang dapat terjadi pada ponsel Nokia E61

Kerusakan Jalur Switch On Off

Pada kerusakan ini ponsel tidak dapat di hidupkan secara normal, dengan menekan switch on off tetapi jika di sambungkan dengan charger ponsel ini akan memunculkan gambar pengisian pada layer, yangartinya program maupun komponenn lainnya masih berfungsi dengan baik.
Atau anda bisa menggunkan alat flasher, restar ponsel pada keadaan normal, restart in normal mode. Jika pengecekan diatas berjalan baik tetapi ponsel tetap tidak bisa di hidupkan normal, maka kita perlu mengecek jalur switch on off nya seperti ada gambar berikut.

Pada gambar yang bertuliskan Power Switch adalah tombol untuk menghidupkan ponsel, dengan kode S4401 yang terhubung dengan komponen R4406 sebagai tahanan, anda bisa mengukur dari ujung switch sampai ke R4406 jika putus anda bisa menjumpernya, tetapi jika jalur tersebut tidak putus maka dari komponen R4406 yang bermasalahpada jalur ke IC Vilma atau IC Power. Jika IC tersebut yang rusak maka anda bisa merehot atau solder ulang. Jika belum berhasil maka IC tersebut harus diganti.

Kerusakan Joystik

Selain tombol keypad Ponsel ini juga dilengkapi dengan Joystik untuk pengaturan menu dan fungsi lainnya, jika ada kerusakan di joystick maka untuk memilih menu yang dinamis menjadi sulit, seperti pemilihan menu yang berada di tengah atau aplikasi yang sedang berjalan.

Joystick tersebut diatur oleh komponen atau IC yang terletak dekat dengan MMC slot, atau disebut driver, jika driver tersebut terangkat kakinya atau ada yang tidak terhubung maka fungsi joysti menjadi terganggu, untuk memperbaikinya pertama coba di rehot atau di panaskan dengan hot air atau di solder ulang pada kaki kakinya. Jika hal tersebut tidak berhasil maka kita perlu mengganti komponen tersebut, seperti pada gambar.

Kerusakan Pada IC LCD

Untuk pengaturan LCD ponsel ini mempunyai dua komponen sebagi penghubung antara LCD dan CPU, komponen sebagi jalur yang berfungsi untuk menyampaikan signal dari CPU hingga di tampilkan pada layer LCD, jika mengalami kerusakan maka LCD tidak dapat menamplkan gambar atau biasanya jika kedua komponen tersebut kaki kakinya adanya yang terlepas LCD akan bergaris atau gambarnya kabur, bahkan hanya menampilkan layar putih.

Langkah awal jika ponsel ada gejala kerusakan pada LCD biasakan untuk memeriksa kabel yang terhubung dengan konektor, dan periksa kaki kakinya karena konektor tersebut memakai kaki tembaga yang menempel di PCB, jika renggang coba di resolder kaki kakinya

Yang kedua perbaiki programnya, karena program juga berpebgaruh untuk menampilkan gambar pada LCD, anda bisa gunakan alat flasher pertama di unlock, jika belum berhasil baiknya di format ulang (di Flash)

Jka kedua langkah juga belum berhasil maka anda bisa mencoba untuk memanaskan kedua komponen ( pada gambar di bawah) tersebut hingga kaki kakinya menempel kembali, atau coba diangkat dan dipasang kembali. Namun jika komponen tersebut rusak maka harus diganti, tetapi jika komponen tersebut tidak ada penggantinya maka anda bisa melakukan cara singkat dengan menyambungkan jalur komponen tersebut seperti pada gambar berikut.

Lakukan dengan hati hati jangan sampai ada yang salah jalur, karena menyebabkan LCD tidak hidup. Atau blank.

Type kabel yang dipakai untuk instalasi Rumah

Kabel instalasi rumah yang dipakai adalah jenis kawat tembaga, bukan kabel serabut. Kabel kawat tembaga ini ada beberapa macam, diantara yang umum dipakai adalah tipe kabel NYA, NYM dan NYY. Keterangan masing-masin kabel sebagai berikut:

1. NYA : berinti tunggal, berlapis bahan isolasi PVC, untuk instalasi luar/kabel udara. Kode warna isolasi ada warna merah, kuning, biru dan hitam. Kabel tipe ini umum dipergunakan di perumahan karena harganya yang relatif murah. Lapisan isolasinya hanya 1 lapis sehingga mudah cacat, tidak tahan air (NYA adalah tipe kabel udara) dan mudah digigit tikus.
nya-kabel.jpg
kabel NYA
Agar aman memakai kabel tipe ini, kabel harus dipasang dalam pipa/conduit jenis PVC atau saluran tertutup. Sehingga tidak mudah menjadi sasaran gigitan tikus, dan apabila ada isolasi yang terkelupas tidak tersentuh langsung oleh orang
2. NYM : memiliki lapisan isolasi PVC (biasanya warna putih atau abu-abu), ada yang berinti 2, 3 atau 4. Kabel NYM memiliki lapisan isolasi dua lapis, sehingga tingkat keamanannya lebih baik dari kabel NYA (harganya lebih mahal dari NYA). Kabel ini dapat dipergunakan dilingkungan yang kering dan basah, namun tidak boleh ditanam.
nym-kabel.jpg
kabel NYM
3. NYY : memiliki lapisan isolasi PVC (biasanya warna hitam), ada yang berinti 2, 3 atau 4. Kabel NYY dieprgunakan untuk instalasi tertanam (kabel tanah), dan memiliki lapisan isolasi yang lebih kuat dari kabel NYM (harganya lebih mahal dari NYM). Kabel NYY memiliki isolasi yang terbuat dari bahan yang tidak disukai tikus.
nyy-kabel.jpg
kabel NYY

Pengenalan dan cara kerja OSCILOSCOPE

Oscilloscope, alat untuk pengukuran gelombang signal frekuensi ini, sangat verguna dalam pengukuran rangkaian elektronik seperti TV, Radio Komunikasi, dsb.

Untuk perbaikan ponsel, diharapkan kita dapat menggunakan oscilloscope untuk mengetahui kerusakan ponsel secara lebih akurat, selain dari pengalaman yang kita miliki dalam mengatasi kerusakan pada ponsel.

Jadi ada baiknya kita lebih mengenal sedikit atau banyak masalah oscilloscope ini.

Dalam thread ini kita akan membahas lebih lanjut mengenai instrument pengukuran ini.

ada 12 materi yg akan dibahas satu persatu..

Materi 1 :

1. PENGENALAN OSCILLOSCOPE

Osiloskop adalah alat ukur besaran listrik yang dapat memetakan sinyal listrik. Pada kebanyakan aplikasi, grafik yang ditampilkan memperlihatkan bagaimana sinyal berubah terhadap waktu. Seperti yang bisa anda lihat pada gambar di bawah ini ditunjukkan bahwa pada sumbu vertikal(Y) merepresentasikan tegangan V, pada sumbu horisontal(X) menunjukkan besaran waktu t.
Layar osiloskop dibagi atas 8 kotak skala besar dalam arah vertikal dan 10 kotak dalam arah horizontal. Tiap kotak dibuat skala yang lebih kecil. Sejumlah tombol pada osiloskop digunakan untuk mengubah nilai skala-skala tersebut.
Osiloskop 'Dual Trace' dapat memperagakan dua buah sinyal sekaligus pada saat yang sama. Cara ini biasanya digunakan untuk melihat bentuk sinyal pada dua tempat yang berbeda dalam suatu rangkaian elektronik.
Kadang-kadang sinyal osiloskop juga dinyatakan dengan 3 dimensi. Sumbu vertikal(Y) merepresentasikan tegangan V dan sumbu horisontal(X) menunjukkan besaran waktu t. Tambahan sumbu Z merepresentasikan intensitas tampilan osiloskop. Tetapi bagian ini biasanya diabaikan karena tidak dibutuhkan dalam pengukuran.
Wujud/bangun dari osiloskop mirip-mirip sebuah pesawat televisi dengan beberapa tombol pengatur. kecuali terdapat garis-garis(grid) pada layarnya

Apa Saja yang dapat diukur dengan Osiloskop?
Osiloskop sangat penting untuk analisa rangkaian elektronik. Osiloskop penting bagi para montir alat-alat listrik, para teknisi dan peneliti pada bidang elektronika dan sains karena dengan osiloskop kita dapat mengetahui besaran-besaran listrik dari gejala-gejala fisis yang dihasilkan oleh sebuah transducer. Para teknisi otomotif juga memerlukan alat ini untuk mengukur getaran/vibrasi pada sebuah mesin. Jadi dengan osiloskop kita dapat menampilkan sinyal-sinyal listrik yang berkaitan dengan waktu. Dan banyak sekali teknologi yang berhubungan dengan sinyal-sinyal tersebut.

Contoh beberapa kegunaan osiloskop :

* Mengukur besar tegangan listrik dan hubungannya terhadap waktu.
* Mengukur frekuensi sinyal yang berosilasi.
* Mengecek jalannya suatu sinyal pada sebuah rangakaian listrik.
* Membedakan arus AC dengan arus DC.
* Mengecek noise pada sebuah rangkaian listrik dan hubungannya terhadap waktu.

2. SETTING DEFAULT OSCILLOSCOPE


Tombol Umum:

On/Off : Untuk menghidupkan/mematikan Oscilloscope
Ilumination : Untuk menyalakan lampu latar.
Intensity : Untuk mengatur terang/gelapnya garis frekuensi
Focus : Untuk mengatur ketajaman garis frekuensi
Rotation : Untuk mengatur posisi kemiringan rotasi garis frekuensi
CAL : Frekuensi Sample yg dpt diukur utk mengkalibrasi Oscilloscope

Tombol di Vertikal Block :

Position : Untuk mengatur naik turunnya garis.
V. Mode : Untuk mengatur Channel yg dipakai
Ch1 : Menggunakan Input Channel1
Ch2 : menggunakan Input Channel 2
Alt : (Alternate) menggunakan bergantian Channel1 dan Channel 2
Chop : Menggunakan potongan dari Channel 1 dan Channel2
Add : Menggunakan penjumlahan dari Ch1 dan Ch2
Coupling : Dipilih sesuai input Channel yg digunakan,
Source : Sumber pengukuran bisa dari Channel1 atau Channel2
Slope : Normal digunakan yang +. Gunakan yang – untuk kebalikan gelombang.
AC-GND-DC : Pilih AC utk gelombang bolak-balik (peak to peak)
Pilih DC utk gelombang/tegangan searah DC
Pilih GND utk menonaktifkan gelombang mis:Utk menentukan posisi awal
VOLTS/DIV : Untuk menentukan skala vertikal tegangan dlm satu kotak/DIV Vertikal.

Tombol di Horizontal Block :

Position : Untuk mengatur posisi horizontal dari garis gelombang.
TIME/DIV : Untuk megatur skala frekuensi dlm satu kotak/DIV Horizontal.
X10 MAG : Untuk memperbesar/ Magnificient frekuensi menjadi 10x lipat.
Variable : Untuk mengatur kerapatan gelombang horizontal.
Trigger Level : Untuk mengatur agar frekuensi tepat terbaca.

Rumus frekuensi dengan Time(Waktu):
Frekuensi satuannya Hertz (Hz)
Time satuannya Detik/Second (s)

f = 1
T

T = 1
F

M = mega (1.000.000) 1 MHz >< 1 µS
K = kilo (1000) 1 KHz >< 1 mS
m = mili (1/1000) 1 Hz >< 1 S
µ = mikro (1/1.000.000)


Setting tombol yang biasa saya gunakan untuk pengukuran frekuensi (Jadi gak perlu milih2 lagi) :

26 Mhz dan 13 Mhz dan 38,4 Mhz
Volts/Div : 20m Volt
Time/Div : Mentok ke kanan

32 Khz Crystal (Sebelum masuk CCONT)
Volts/Div : 20mV atau 50mV
Time/Div : 20 µS (Boleh juga 0,1mS / 50 µS / 10 µS)

32 Khz Sleep Clock (Sesudah masuk CCONT)
Volts/Div : 1 Volts
Time/Div : 20 µ S

RX I/Q
Volts/Div : 0,2 Volts
Time/Div : 1 mS

SClk (Synthetizer Clock) 3V
Volts/Div : 1 Volt
Time/Div : 0,1mS atau bebas.

COBBA Clock
Volts/Div : 0,5 Volts
Time/Div : mentok ke kanan.

Pada umumnya, tiap osiloskop sudah dilengkapi sumber sinyal acuan untuk kalibrasi. Sebagai contoh, osiloskop GW tipe tertentu mempunyai acuan gelombang persegi dengan amplitudo 2V peak to peak dengan frekuensi 1 KHz.

Misalkan kanal 1 yang akan dikalibrasi, maka BNC probe dihubungkan ke terminal masukan kanal 1 dengan ujung probe yang merah dihubungkan ke terminal kalibrasi. Capit buaya yang hitam tidak perlu dihubungkan ke ground osiloskop karena sudah terhubung secara internal. Pada layar osiloskop akan nampak gelombang persegi. Atur tombol kontrol VOLTS/DIV dan TIME/DIV sampai diperoleh gambar yang jelas dengan amplitudo 2 V peak to peak dengan frekuensi 1 KHz.

Gunakan tombol kontrol posisi vertikal V-pos untuk menggerakkan seluruh gambar dalam arah vertikal dan tombol horizontal H-pos untuk menggerakkan seluruh gambar dalam arah horizontal. Cara ini dilakukan agar letak gambar mudah dilihat dan dibaca.
Pada saat osiloskop dihubungkan dengan sirkuit, sinyal tegangan bergerak melalui probe ke sistem vertical. Pada gambar ditunjukkan diagram blok sederhana suatu osiloskop analog.
Bergantung kepada pengaturan skala vertikal(volts/div), attenuator akan memperkecil sinyal masukan sedangkan amplifier akan memperkuat sinyal masukan.

Selanjutnya sinyal tersebut akan bergerak melalui keping pembelok vertikal dalam CRT(Cathode Ray Tube). Tegangan yang diberikan pada pelat tersebut akan mengakibatkan titik cahaya bergerak (berkas elektron yang menumbuk fosfor dalam CRT akan menghasilkan pendaran cahaya). Tegangan positif akan menyebabkan titik tersebut naik sedangkan tegangan negatif akan menyebabkan titik tersebut turun.

Sinyal akan bergerak juga ke bagian sistem trigger untuk memulai sapuan horizontal (horizontal sweep). Sapuan horizontal ini menyebabkan titik cahaya bergerak melintasi layar. Jadi, jika sistem horizontal mendapat trigger, titik cahaya melintasi layar dari kiri ke kanan dengan selang waktu tertentu. Pada kecepatan tinggi titik tersebut dapat melintasi layar hingga 500.000 kali per detik.

Secara bersamaan kerja sistem penyapu horizontal dan pembelok vertikal akan menghasilkan pemetaan sinyal pada layar. Trigger diperlukan untuk menstabilkan sinyal berulang. Untuk meyakinkan bahwa sapuan dimulai pada titik yang sama dari sinyal berulang.

Pada saat menggunakan osiloskop perlu diperhatikan beberapa hal sebagai berikut:

1. Tentukan skala sumbu Y (tegangan) dengan mengatur posisi tombol Volt/Div pada posisi tertentu. Jika sinyal masukannya diperkirakan cukup besar, gunakan skala Volt/Div yang besar. Jika sulit memperkirakan besarnya tegangan masukan, gunakan attenuator 10 x (peredam sinyal) pada probe atau skala Volt/Div dipasang pada posisi paling besar.
2. Tentukan skala Time/Div untuk mengatur tampilan frekuensi sinyal masukan.
3. Gunakan tombol Trigger atau hold-off untuk memperoleh sinyal keluaran yang stabil.
4. Gunakan tombol pengatur fokus jika gambarnya kurang fokus.
5. Gunakan tombol pengatur intensitas jika gambarnya sangat/kurang terang.

Motor Starter Star Delta dengan aplikasi PLC

Berikut ini adalah contoh ladder motor starter star-delta disertai penjelasannya. Ladder ini di buat menggunakan software SYSWIN 3.4 dengan PLC CPM2A.

Pada Network 1, START dan STOP adalah tombol yang digunakan untuk mengaktifkan dan mematikan rangkaian. OVERLOAD adalah masukan dari Thermal Overload Relay (TOR). Untuk menyimpan status digunakan bit status STARDELTA_GO pada alamat 200.00 menggunakan instruksi KEEP(11).

Bit STARDELTA_GO akan direset ketika tombol STOP ditekan atau terjadi overload. Jadi rangkaian akan OFF jika tombol STOP ditekan atau kontak OVERLOAD aktif. Secara fisik OVERLOAD adalah masukan kontak normally-open dari TOR.

Rangkaian star-delta tanpa fungsi putar-balik motor memerlukan 3 buah kontaktor. Pada ladder ini saya namakan MAIN, STAR, dan DELTA. Pada awal start, rangkaian akan menjalankan motor dengan hubungan star. Beberapa detik kemudian, rangkaian akan mengubah hubungan star menjadi hubungan delta.

Network 2 adalah ladder untuk hubungan star. Jika STARDELTA_GO = ON dan OVERLOAD = ON, maka kontaktor MAIN akan ON. Demikian juga halnya dengan timer TIM000, dan mulai menghitung.

Selama timer menghitung, kontaktor STAR akan ON, sehingga motor akan berputar dengan hubungan star.

Setelah 4 detik, timer akan mengaktifkan kontak outputnya sehingga kontaktor STAR pada Network 2 akan OFF dan kontaktor DELTA akan ON. Motor pun running dengan hubungan DELTA.

Kontak NO dari TOR juga dihubungkan dengan output 10.03 sebagai alarm yang akan aktif ketika terjadi overload pada motor.

LM 35 sensor suhu dalam proyek mikrokontroler

LM35DZ adalah komponen sensor suhu berukuran kecil seperti transistor (TO-92). Komponen yang sangat mudah digunakan ini mampu mengukur suhu hingga 100 derajad Celcius. Dengan tegangan keluaran yang terskala linear dengan suhu terukur, yakni 10 milivolt per 1 derajad Celcius, maka komponen ini sangat cocok untuk digunakan sebagai teman eksperimen kita, atau bahkan untuk aplikasi-aplikasi seperti termometer ruang digital, mesin pasteurisasi, atau termometer badan digital.

LM35 dapat disuplai dengan tegangan mulai 4V-30V DC dengan arus pengurasan 60 mikroampere, memiliki tingkat efek self-heating yang rendah (0,08 derajad Celcius), dan termasuk kerabat dekat dompet kita-kita, hahaha:D

Btw, self-heating adalah efek pemanasan oleh komponen itu sendiri akibat adanya arus yang bekerja melewatinya. Untuk komponen sensor suhu, parameter ini harus dipertimbangkan dan diupakara atau di-handle dengan baik karena hal ini dapat menyebabkan kesalahan pengukuran. Seperti sensor suhu jenis RTD PT100 atau PT1000 misalnya, komponen ini tidak boleh dieksitasi oleh arus melebihi 1 miliampere, jika melebihi, maka sensor akan mengalami self-heating yang menyebabkan hasil pengukuran senantiasa lebih tinggi dibandingkan suhu yang sebenarnya.

Gambar disamping kanan adalah gambar skematik rangkaian dasar sensor suhu LM35-DZ. Rangkaian ini sangat sederhana dan praktis. Vout adalah tegangan keluaran sensor yang terskala linear terhadap suhu terukur, yakni 10 milivolt per 1 derajad celcius. Jadi jika Vout = 530mV, maka suhu terukur adalah 53 derajad Celcius.Dan jika Vout = 320mV, maka suhu terukur adalah 32 derajad Celcius. Tegangan keluaran ini bisa langsung diumpankan sebagai masukan ke rangkaian pengkondisi sinyal seperti rangkaian penguat operasional dan rangkaian filter, atau rangkaian lain seperti rangkaian pembanding tegangan dan rangkaian Analog-to-Digital Converter.

Rangkaian dasar tersebut cukup untuk sekedar bereksperimen atau untuk aplikasi yang tidak memerlukan akurasi pengukuran yang sempurna. Akan tetapi tidak untuk aplikasi yang sesungguhnya. Terbukti dari eksperimen yang telah saya lakukan, tegangan keluaran sensor belumlah stabil. Pada kondisi suhu yang relatif sama, jika tegangan suplai saya ubah-ubah (saya naikkan atau turunkan), maka Vout juga ikut berubah. Memang secara logika hal ini sepertinya benar, tapi untuk instrumentasi hal ini tidaklah diperkenankan. Dibandingkan dengan tingkat kepresisian, maka tingkat akurasi alat ukur lebih utama karena alat ukur seyogyanya dapat dijadikan patokan bagi penggunanya. Jika nilainya berubah-ubah untuk kondisi yang relatif tidak ada perubahan, maka alat ukur yang demikian ini tidak dapat digunakan.

Untuk memperbaiki kinerja rangkaian dasar di atas, maka ditambahkan beberapa komponen pasif seperti yang ditunjukkan pada gambar berikut ini.

Dua buah resistor 150K yang diparalel membentuk resistor 75K yang diseri dengan kapasitor 1uF. Rangkaian RC-Seri ini merupakan rekomendasi dari pabrik pembuat LM35. Sedangkan resistor 1K5 dan kapasitor 1nF membentuk rangkaian passive low-pass filter dengan frekuensi 1 kHz. Tegangan keluaran filter kemudian diumpankan ke penguat tegangan tak-membalik dengan faktor penguatan yang dapat diatur menggunakan resistor variabel.

Dengan rangkaian ini, terbukti tegangan keluaran rangkaian ini jauh lebih stabil dibandingkan tegangan keluaran rangkaian dasar di atas. Dengan demikian akurasi pengukuran telah dapat ditingkatkan. Tegangan keluaran opamp dapat langsung diumpankan ke rangkaian ADC untuk kemudian datanya diolah lebih lanjut oleh mikrokontroler.

Dampak Gelombang Elektromagnetik Ponsel Pada Kesehatan

Banyak kalangan mengklaim bahwa gelombang elektromagnetik yang dipancarkan oleh ponsel (telepon seluler) dapat mengganggu kesehatan pengguna dan orang-orang yang berdiri di sekitarnya. Anggapan ini dibenarkan oleh para ahli bidang telekomunikasi, namun tidak sedikit pula bantahan-bantahan oleh beberapa pihak yang menyangkal sebaliknya.

Para ahli mengungkapkan radiasi yang ditimbulkan ponsel tidak seratus persen bisa menyebabkan gangguan kesehatan terhadap manusia, mengingat masih banyak orang yang masih setia menggunakan piranti wireless ini untuk memudahkan aktifitasnya dan tidak terjadi suatu hal apapun bahkan boleh dibilang masih aman-aman saja.

Namun kita juga tidak bisa mengabaikan permasalahan ini, hal ini sudah dibuktikan oleh salah satu negara yang memiliki jumlah pengguna ponsel terbanyak dunia. Peraturannya bisa dikatakan sangat ketat apalagi mengenai efek samping dari radiasi ponsel. Penetapan aturan ambang batas toleransi radiasi ponsel, tentunya dapat menimbulkan banyak perdebatan di kalangan produsen dengan pemerintah setempat.

Banyak peneliti yang mengungkap pengaruh radiasi ponsel terhadap kesehatan manusia menerangkan bahwa seseorang yang banyak terkena radiasi ponsel cepat atau lambat, dapat menyebabkan efek detrimental pada otak, bahkan ada yang berpendapat bahwa penggunaan ponsel secara terus menerus selama lima sampai 18 tahun atau lebih, dapat beresiko lebih tinggi terkena kanker leukemia atau kanker pankreas serta juga dapat menyebabkan penurunan jumlah produksi sperma sampai 80 persen.

Paling tidak sampai sekarang ini masih belum adanya bukti antara radiasi RF (radio frequensi) dengan pengaruhnya terhadap kesehatan manusia, dan orang tidak bisa memastikan bahwa sebuah handset mampu menimbulkan resiko. Kalaupun ada pengaruhnya sangatlah kecil dan diperlukan pengujian terhadap teknologi ini lebih mendalam. Tidak sedikit pula orang beranggapan penggunaan handsfree salah satu alternatif untuk bisa mengurangi pengaruh radiasi gelombang radio yang dipancarkan ponsel terhadap kesehatannya.

Seiring semakin populernya telepon genggam ini banyak orang sudah mulai mempertanyakan sebenarnya seberapa besar pengaruh radiasi ponsel kepada kesehatan manusia?

Banyak pengguna ponsel yang mungkin tidak mengetahui bahwa ponsel yang mereka gunakan dapat mengirimkan gelombang elektromagnetik ke dalam tubuh mereka.

Sesungguhnya setiap ponsel memiliki spesifikasi ukuran banyaknya energi gelombang mikro yang dapat menembus ke dalam bagian tubuh seseorang tergantung pada seberapa dekat ponsel dengan kepala. Paling tidak kurang lebih sebanyak 60 persen dari radiasi gelombang mikro yang diserap dan menembus daerah sekitar kepala.

Ponsel merupakan alat komunikasi dua arah dengan menggunakan gelombang radio yang juga dikenal dengan radio frequensi (RF), dimanapun kita melakukan panggilan, suara akan ditulis dalam sebuah kode tertentu ke dalam gelombang radio dan selanjutnya diteruskan melalui antena ponsel menuju ke base station terdekat dimana kita melakukan panggilan. Gelombang radio inilah yang menimbulkan radiasi dan banyak kontroversi dari berbagai kalangan tentang keamanan dalam menggunakan ponsel.

Pengukuran kadar radiasi sebuah ponsel umumnya disebut dengan Specific Absorption Rate (SAR). Pengukur energi radio frekuensi atau RF yang diserap oleh jaringan tubuh pengguna ponsel bisa dinyatakan sebagai unit dari watts perkilogram (W/kg). Batas SAR yang ditetapkan oleh International Commission on Non-Ionizing Radiation Protection (ICNIRP) adalah 2.0 W/kg. Sementara The Institute of Electrical and Electronics Engineers (IEEE) juga telah menetapkan sebuah standar baru yang digunakan oleh negara Amerika dan negara lain termasuk Indonesia dengan menggunakan batas 1.6 W/kg.

Pengujian SAR diadakan dengan menuangkan simulasi jaringan ponsel yang memancarkan radio frekuensi ke dalam sebuah bentuk kepala manusia.

Menempatkan ponsel pada bagian kepala dan dioperasikan dengan full power. Sebuah robot lengan melakukan penyelidikan di dalam jaringan untuk menemukan area dimana terdapat RF (radio frekuensi) yang paling tinggi, serta ingin menemukan dimana proses kandungan SAR ini dilakukan dengan secara perhitungan matematik.

Penting untuk diketahui bahwa dalam daftar level radiasi ponsel tersebut tidak menyatakan bahwa menggunakan ponsel berbahaya atau tidak untuk kesehatan. Jadi semua keputusan ada di tangan pengguna ponsel.

Sumber: Berit@ iptek

Downloader untuk AT89S51 atau AT89S52.

Para penggemar mikrokontroller sudah pasti harus memiliki perangkat yang satu ini. Downloader ini kompatibel dengan mokrokontroller MCS-51 seperti AT89S51 atau AT89S52. Downloader ini dirancang sesimpel mungkin , tanpa menggunakan buffer dalam komunikasi dengan PC .berikut skemanya:

Berikut layout PCB dan tata letak komponennya (tampak atas):

Layout tersebut dibuat dengan software Dip Trace dan dapat anda download filenya disini.
Hal yang harus diperhatikan adalah dalam pembuatan kabel ISP, urutan kaki-kakinya harus benar.


Untuk mengisi programnya menggunakan software ISP Flash Programing karena mudah dan simple dalam pengoperasiannya,anda dapat download disini.

Rangakaian Downloader Mikrokontroler AVR Menggunakan USB

This circuit is a downloader for Atmel AVR microcontroller. The circuit uses ATMega48 or ATmega8 and a few other passive components. Programmer or a downloader uses a USB-only drive firmware (firmware-only USB driver), does not require a special USB controller.

Rangakaian Downloader Mikrokontroler AVR Menggunakan USBSkema Rangakaian Downloader
Mikrokontroler AVR Menggunakan USB


Features
  • Can be used for a variety of platforms, have been tested for Linux, Mac OS and Windows;
  • Does not require special controllers or smd components;
  • Speeds may reach 5kByte/detik programming;
  • Option SCK to support low-speed microcontroller targets < 1.5 Mhz
Software
  • AVRDUDE USBasp support since version 5.2 - Take AVRDUDE.
  • Khazama AVR - Programmer is an application Windows XP / Vista for USBasp and avrdude.
  • EXtreme Burner - AVR is a Windows GUI software specifically for USB AVR programmer USBasp based, not use AVRDude.

Rangkaian Thermometer Berbasis Mikrokontroler AT89S52

This is a circuit of a microcontroller AT89S52 Thermometer and 12-bit ADC LTC1298, programs written in the language c program with digital filtering and interface the LED display. The reading provides 0.1C sensitivity.

The hardware block and circuit diagram is shown in Fig below. The sensor is epoxy molded thermistor. The circuit for signal conditioning is a simple voltage divider. The ADC is 12-bit SPI interface LTC1298 analog-to-digital converter. The microcontroller is Atmel 89S52. The display has four digits 0.5 inches 7-segment LED. The segment driver provides 32-bit CMOS output.

Rangkaian Thermometer Berbasis Mikrokontroler AT89S52
Skema Rangkaian Thermometer Berbasis Mikrokontroler AT89S52

Rangkaian Thermometer Berbasis Mikrokontroler AT89S52
Thermometer Block Diagram

The ADC is 12-bit (LTC1298 or MC3202) are two channels, CH0 and CH1. The input signal from thermistor for ADC channel 0 is simple voltage divider. Channel1 is available for other sensor. The sample shown in schematic is HIH-3160 Honeywell Relative Humidity Sensor. The ADC chip is interfaced with MCU, 89S52 with P1.1, P1.2 and P1.3. The display has 4-digit LED. The 4094 CMOS shift register drives the LED directly.


Software

The main function is time triggered by 10ms timer0 running. The ADC is updated on LED every 10 ticks.

while(1)
{
while(!cputick)
continue;
cputick=0;
print_ADC();
}

The function that reads 12-bit data from ADC is read_ADC(char n). The function has two loops. First loop is to send 4-bit command. And the second loop is 12-bit to shift the data from ADC.

sbit Data = P1^1;
sbit CLK = P1^2;
sbit CS = P1^3;


int read_ADC(char n)
{ int k;
char i,channel;
k=0;
CS=0;
if(n==0) channel=0x0d;
else channel=0x0f;

for(i=0;i<4;i++) clk =" 0;" data =" 1;" data =" 0;" clk =" 1;" data =" 1;" clk =" 0;" i="0;i<12;i++)" clk="1;" clk="0;" cs =" 1;">

To provide smooth reading, I added the 5-point moving average to the raw data. The function low_pass_filte1( ) is used to filter the high frequency noise. The reading is calibrated to degree Celsius with Platinum 100 standard thermometer. We found the equation y=0.0323x-15.122.

int low_pass_filter1(void)
{
x5=x4;
x4=x3;
x3=x2;
x2=x1;
x1=read_ADC(0);
return(x1+x2+x3+x4+x5)/5;
}

float read_temp1_filter(void)
{
return(0.0323*low_pass_filter1()-15.122);
}